laminar mixed convection of al2o3-water nanofluid in a three-dimensional microchannel
Authors
abstract
the fluid flow and heat transfer in a three-dimensional microchannel filled with al2o3- water nanofluid is numerically investigated. the hybrid scheme is used to discretize the convection terms and simpler algorithm is adopted to couple the velocity and pressure field in the momentum equations. the temperature fields, variation of horizontal velocity along the centre line of the channel, average nusselt number and the thermal resistance in different aspect ratios are presented. it is observed that aspect ratio mainly affected the temperature gradient as well as heat transfer. analyzing the results of numerical simulations indicates that with increasing aspect ratio, horizontal velocity along the centre line increased and then, average nusselt number and the inlet and outlet thermal resistance decrease in the microchannel.
similar resources
Laminar Mixed Convection of Al2O3-Water Nanofluid in a Three-Dimensional Microchannel
The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The temperature fields, variation of horizontal velocity along the centre line of the channel, a...
full textEffect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel
The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...
full textEffect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel
The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...
full textMixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure
In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperature...
full textNumerical investigation of heat transfer and laminar Water-Al2O3 nanofluid flow in a rectangular Rib-Microchannel
در تحقیق حاضر در مورد اثرات ارتفاع دندانه در میکروکانال دندانهدار دو بعدی، بر روی پارامترهای انتقال حرارت و دینامیک سیالات محاسباتی جریان آرام نانوسیال آب-اکسید آلومینیم است. بررسیهای این تحقیق به صورت عددی با نرم افزار تجاری فلوئنت3/6 برای اعداد رینولدز10 و 100، برای چهار حالت مختلف ارتفاع دندانه انجام شده است. افزایش ارتفاع دندانههای داخلی یا مغشوشگرهای جریان، عملکرد انتقال حرارت جابجایی د...
full texteffect of al2o3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel
the fluid flow and heat transfer in a three-dimensional microchannel filled with al2o3- water nanofluid is numerically investigated. the hybrid scheme is used to discretize the convection terms and simpler algorithm is adopted to couple the velocity and pressure field in the momentum equations. the thermal and flow fields were analyzed using different volume fractions of nanoparticles and diffe...
full textMy Resources
Save resource for easier access later
Journal title:
journal of nanostructuresPublisher: university of kashan
ISSN 2251-7871
volume 2
issue 1 2012
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023